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Statistical Tests for Detecting Crustal Movements 
Using Bayesian Inference

by K. R. Koch1 
National Geodetic Survey 

Charting and Geodetic Services 
National Ocean Service, NO A A 

Rockville, Md. 20852

ABSTRACT

The test of a general linear hypothesis in sampling theory, applied to the detection of recent crustal 
movements, is compared with Bayesian inference based on vague prior distributions. Both approaches 
give equivalent results. In addition, the test of inequality constraints can be readily derived by Bayesian 
inference. Also, less sensitive and more realistic tests than the ones of the sampling theory for the 
detection of crustal movements are obtained by Bayesian inference. These tests are simple to apply, since 
the distribution needed is the central F-distribution. As an example, two epochs of leveling data are 
analyzed in the Houston-Galveston, Tex., region, an area of marked land subsidence.

1. INTRODUCTION

For the detection of crustal movements by geodetic 
methods, networks are established by measurements 
repeated at different time epochs. Coordinates are then 
obtained at the different epochs for the points in the 
network, and coordinate differences can be formed. Since 
the geodetic observations are random quantities, not all 
coordinate differences can be attributed to crustal 
movements. By hypothesis testing a decision is reached 
whether a coordinate difference is significantly different 
from zero so that crustal movement can be assumed. The 
hypothesis to be formed equates the coordinates of certain 
points of one epoch to the coordinates of the following 
epoch. If the hypothesis is accepted, these points can be 
considered as fixed points between the two epochs; if the 
hypothesis is rejected, points which have moved are 
found. Thus by means of hypothesis testing the fixed 
points can be separated from the points which moved.

Unfortunately, assuming the identity of coordinates of 
points that did not move between two epochs is not 
realistic. First, the monumented points might have been 
subjected to short-period changes caused, for instance, by 
temperature effects. Then, centering errors in the place
ment of the instruments can occur when the observations 
are repeated at different time epochs. Also, different 
weather conditions at the epochs might influence the 
pointing of the instruments.

If the hypothesis of the identity of coordinates is 
applied in areas where there is adequate knowledge of the 
fixed points, the hypothesis will often be rejected for some 
points which it is otherwise reasonable to fix, thus finding 
fewer fixed points than expected. Hence, the test of the 
identity of the coordinates between different epochs is too 
sensitive. To overcome this deficiency and obtain less 
sensitive tests, Koch (1981a) proposed the use of in
equalities rather than equalities for hypothesis testing. 
This means allowing intervals for the values of the 
coordinate differences under the hypothesis rather than 
constraining them to zero. However, by using sampling 
theory, it is difficult to derive the distribution of the test 
statistic for such a hypothesis. A simpler solution to this 
problem of obtaining less sensitive tests is derived by 
Bayesian inference.

For some time the Bayesian approach was considered 
subjective because it required the introduction of prior 
information. In the last two decades, however, the use of 
vague or noninformative priors has been shown to give 
results equivalent to the sampling theory. In the Bayesian 
approach the parameters are random variables whose 
distribution can be computed if the observations are 
given. The test of hypotheses in sampling theory 
corresponds to the determination of the probabilities for 
the subspaces of the parameter space defined by the 
hypotheses. Hypotheses that restrict the parameter space, 
for instance by inequalities, can therefore be handled 
more simply by the Bayesian approach than by sampling 
theory. Thus, the two methods do not compete with each 
other but complement each other.

The Bayesian approach was first introducted to geodesy 
by Bossier (1972) who investigated its use for geodetic 
problems, and applied point estimation under inequality 
constraints. Riesmeier (1984) showed the advantages of

1 Permanent address: lnstitut fur Theoretische Geodasie der 
Universitat Bonn. Nussallee 17, 5300 Bonn I. Federal Republic of 
Germany.

This research was performed during July-Sept. 1983, while the author 
was a Senior Visiting Scientist at the National Geodetic Survey, under 
the auspices of the Committee on Geodesy, National Research Council. 
National Academy of Sciences, Washington, D.C.
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the Bayesian approach over sampling theory in the case of 
the test of hypotheses with inequalities. He also derived 
less sensitive tests for the detection of crustal movements 
by Bayesian inference. These tests are applied in this 
report to study land subsidence from two epochs of 
leveling data in the Houston-Galveston area. The tests are 
simple to use since the probability of an F-distributed 
random variable has to be computed if the model for 
estimating the unknown parameters is the univariate 
model. Hence, the same distribution is used as for the 
hypothesis testing in sampling theory.

The test of the identity of coordinates for the detection 
of crustal movements assumes that no information is 
available on the nature of the movements which might 
have occurred. But if the test, for instance, reveals equal 
shifts for a group of points, the problem of estimating the 
coordinates has to be reparameterized by replacing some 
unknown coordinates by translational or rotational 
parameters. Here again the problem of obtaining less 
sensitive tests for the parameters arises, which can be 
solved by the approach given below.

In the following sections, a short outline of hypothesis 
testing in the sampling theory for detecting crustal move
ments in a univariate model is given. Then the Bayesian 
approach leading to less sensitive tests is described, and 
finally the tests are applied to leveling data.

2. HYPOTHESIS TESTING IN SAMPLING THEORY

We start with the Gauss-Markof model for the estima
tion of unknown parameters

X p = E(y), D(y) = a2I (2.1)

where p is the u x 1 vector of unknown fixed parameters, 
y the n x 1 vector of random observations, X the n x u 
matrix of known coefficients, a: the variance of unit 
weight, and I the identity matrix. The operators leading to 
the expected values and to the variances and covariances 
of the random variables are denoted by E and D respec
tively. The special model (2.1) with the covariance matrix 
a:I for the observations can be obtained from a general 
model with the covariance matrix o'P1, where P is the 
weight matrix, by a linear transformation. The model is 
assumed not to be of full rank, that is, R(X) = q < u.

To analyze observations of different time epochs in 
order to detect recent crustal movements, the model (2.1) 
can be applied. If the configuration of the network and 
the design of the observations do not change over all 
epochs, the multivariate model for estimating parameters 
could be used. However, the leveling data to be analyzed 
here do not fulfill the requirements of the multivariate 
model, so that this model will not be considered. In 
addition, only the analysis of two epochs of observations 
is treated here, since this analysis is the most important 
one. It can be easily extended to more than two epochs of 
data (Koch 1981b).

Let yi be the m x 1 vector of observations of the first

epoch to be analyzed, /3i the ui x 1 vector of unknown 
coordinates of the network points for the first epoch, and 
Xi the m x ui matrix of known coefficients with R(Xi) = 
qi < Ui. Let y2 be the n2 x 1 vector of observations of the 
second epoch to be compared with the first one, Pi the u2 
x 1 vector of unknown coordinates of the network points 
for the second epoch, X2 the n2 x U2 matrix of known 
coefficients with R(X2) = q2 < u2 and a2 the variance of 
unit weight. In contrast to the multivariate model the 
observations of the first and second epoch are considered 
as independent so that instead of eq. (2.1) the following 
model is obtained:

X, O
o x2 E( ), D( ) = a: I O 

O I
(2.2)

Free networks are assumed for which the datum is not 
defined. This is expressed by the rank deficiencies of the 
matrices Xi and X2. The coordinates y8i and p2 can, 
therefore, be only unbiasedly estimated if they are pro
jected onto subspaces whose dimensions are reduced in 
comparison to the original space by the number ui — qi 
and u2 — q2 of constraints necessary to define the datum. 
If (8m and Phi denote the projected parameters, their best 
linear unbiased estimates are given by Koch (1980: 171)
Ph\ X,'X, 0 - X,'y,
Phi o X2'X2 rs X2'y2

(X,'X,)„ o X,'y,
O (X2'X2);S X2'y2

(2.3)

where |...|« denotes a symmetric reflexive generalized 
inverse. This inverse is computed by taking the points, 
which are considered as fixed between the two epochs of 
observations, to define the datum (Koch and Fritsch 
1981, Koch 1983). It means that minimal constraints are 
introduced such that the centroid computed from the 
datum points is fixed from the first epoch to the second, 
in case a translation suffices to establish the datum, as in 
leveling nets, where only one constraint is needed. If a 
rotation or scale is also necessary to define the datum, 
additional minimal constraints are introduced (Pope 
1971).

If the coordinates of the points assumed as fixed 
between the two epochs are denoted by the vectors pf\ and 
Pji, the hypothesis to test this assumption is given by

H„: pn = pn against H,: pf\ =£ Pfi (2.4)

where H0 denotes the null hypothesis and Hi the alter
native hypothesis. The hypothesis is well suited to test for 
fixed points, but the more points included in the test, the 
more sensitive the test becomes.

A less sensitive test is obtained by the hypothesis that 
the coordinates of only one point are equal from one 
epoch to the next. If Pn denotes the coordinates of the 
first epoch of the point i to be tested and pl2 the 
coordinates of the second epoch of the point i, the 
hypothesis is given by
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H0: pn = pa against Hi: P,\ # /3,2. (2.5)

Depending on the dimensions of the network, fi,\ and Pa 
contain one coordinate for a leveling net, two coordinates 
for a planar network, and three coordinates for a three- 
dimensional network.

The point i to be tested by hypothesis (2.5) should not 
belong to the points which define the datum and which 
are therefore considered as fixed points. Instead, the 
hypothesis (2.5) has to be used to Find fixed points in 
addition to the points which define the datum. If fixed 
points are found by (2.5) they should be added to the 
points which define the datum. Thus, (2.5) is applied after 
each update of the datum points, so that in an iteration 
procedure the fixed points are separated from the points 
which have moved (Koch 1981b).

Using the maximum-likelihood criterion, the test 
statistic T of the test of a general linear hypothesis of the 
projected parameters

H„: HPb = w against Hi: Hpb^ w, (2.6)

where H, is a known r x u matrix, and w, a known r x 1 
vector, is given by

T= 7^T(H Pb ~ w)' (H X'X)„ H')"1 (H Pb ~ w). (2.7)

Pb and a~ are the estimates of Pi, and a2. If the null 
hypothesis is true, the test statistic T is distributed as the 
central F-distribution

T ~ F (r, n — q) (2.8)

so that the hypothesis is rejected if

T > F,-a; , (2.9)

where Fi-„; r. n-q is the upper a-percentage point of the 
F-distribution.

The null hypothesis of (2.5) expressed in the general 
form (2.6) is given by

H„: |0,..., 0,1,0......0,-I,0, O Phi
Pb2 O (2.10)

where the unit matrices I are positioned such that the 
coordinates of the point i in phl and Phi are selected. By 
substituting (2.10) into (2.7) we get, together with (2.3),

T= (fin-priWXi’XiU + aXi'XiUr'CPn-'Pa)
(2.11)

where ((Xi'Xi)jj), contains the elements of (X|'X|)„ 
necessary to compute the variances and covariances of the 
coordinates of point i. For a leveling net, the vectors (5,\ 
and pa. have only one element so that with r = I the test 
statistic T is obtained by

T=(j8,-i -Pa)2} (52(((Xi'X,);s)tf + ((X2'X2Q„)) (2.12)

where ((Xi'Xi)„)„ is now the i-th diagonal element of the 
matrix (Xi'Xi)^.

The points most likely to be fixed points are the ones 
which give small values for the test statistic T. They are 
tested first, in order to find the fixed points.

3. BAYESIAN INFERENCE

We start with the linear model

XP = y + e, D(e) = a2I (3.1)

where, in contrast to the Gauss-Markof model (2.1), the u 
x 1 vector P of unknown parameters is not a fixed vector 
but a random vector. The unknown variance of unit 
weight a2 is a random variable, too. Random vectors are 
also the n x 1 vector y of observations and the n x 1 vector 
e of errors, while X is a known, fixed n x u matrix.

The probability density p(/3, a|y) of the unknown 
parameters p and a. under the condition that the obser
vations y are given, is obtained by Bayes’ theorem

p(P, a|y)cc p(/3, a) p(y | 0, a) (3.2)

where denotes proportionality. The density p(/3, a | y) is 
also called the posterior density in contrast to the prior 
density p(/3, a) of the parameters; and p(y | P, a), inter
preted as a function of P and a, is the likelihood function.

To derive the posterior density for p. the multivariate 
normal distribution is assumed for the error vector e

e ~ N(0, o2 I) (3.3)

By transforming e to y by means of (3.1), the likelihood 
function p(y |/?, a) is obtained, where the unknown 
parameters are replaced by the sufficient statistics

P = (X'X)-'X'y and 61 = (X p - y)'(X p - y)/(n-u)
(3.4)

if a model (3.1) of full rank is given. Vague priors, also 
called noninformative priors, are introduced for the 
unknown parameters P and a. Then it can be shown that 
the posterior distribution of the unknown parameter P 
under the condition, that the observations y are given, is 
the multivariate t-distribution (Box and Tiao 1973: 117; 
Zellner 1971: 67)

p ~ l(p, a2(X'X)_1, n-u) (3.5)

with the density

D(fl|v)= F(n/ 2) det (X'X)U d~"
PWly> r((n-u)/2)((n-u)7r)“/2 A ,, ,,

(3.6)
{l+(/§—/3)'X'X (/3 /?)/((n—u)tr2)}"/2

A linear combination H p of the vector p of unknown 
parameters, with H being an r x u matrix of full row rank, 
is also distributed as the multivariate t-distribution

HP ~ t(H/3, a:H(X'X)"'H', n-u) (3.7)

In models not of full rank with R(X) = q < u, the 
density of the unknown parameters P is still proportional 
to

p(P\y)*{\+(P ~ PY X'X (p - P)/((n-q)62)}-n/2
as in (3.6), with p being an estimate of p. But the density 
cannot be normalized because of det(X'X) = 0. For
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linear transformations of the unknown parameters that 
lead to estimable functions, like the linear transformations 
H /3/, of the projected parameters Pi,, we get from eq. (3.7) 
the distribution

Hfa ~ t(Hph, d: H (X'X)„ H, n-q) (3.8)

where det(H (X'X)~ H')^0.
By means of the multivariate t-distributions (3.5), (3.7) 

or (3.8) any statistical inference concerning the unknown 
parameters or linear transformations of the parameters 
may be performed. For instance, if the parameter space is 
restricted by the inequality constraints H/3 > w, the 
probability associated with this restricted space is given by

P(H/3 > w| y) =/ p(/31 y) dp with B = {/3: H/3 > w}. (3.9)
B

Of course, the integration of the multivariate t-distribution 
is difficult, especially if the limits of the integration are not 
orthogonal (Riesmeier 1984). However, in general, the 
hypothesis testing with inequalities is solved by eq. (3.9), 
since the hypothesis H/3 > w is rejected, if

P(H/3 > w| y) > 1 — a

with a being the significance value of the test. This can be 
seen by assuming H/3 > w as the region of acceptance for 
the test of the hypothesis, if it is true. Hence, by integrating 
over the region of rejection the probability of the error of 
the first kind is obtained to be smaller than the significance 
level a. However, for a test of a hypothesis the probability 
of the error of the first kind has to be smaller than or 
equal to a, so that (3.10) is valid.

4. LESS SENSITIVE TESTS

To avoid the integration of the multivariate t-distribu
tion, a special case of eq. (3.9), which leads to the test 
(3.10) of the hypothesis H/3 > w, is now considered. This 
gives tests for detecting recent crustal movements which 
are less sensitive than the ones of the sampling 
theory. By means of Bayesian inference, results are 
obtained which are equivalent to the test of a general 
linear hypothesis in sampling theory because the quadratic 
form in the density of (3.8) is distributed as the central 
F-distribution (Box and Tiao 1973: 117; Zellner 1971: 
385)

(H/3/, - H/3/,)' (H (X'X)„HT' (H/3/, - H/3/,)/(r<52)
~F(r, n-q). (4.1)

If the left side is set equal to the upper a-percentage point 
Fj-a; r, n-q of the F-distribution, a hyperellipsoid B is 
obtained (Koch 1980: 259) with the probability

P(H/3/, e B | y) = 1 - a (4.2)

where

B = {H ph:
(H/3/, — H/3/,)'(H (X'X)„Hy‘ (H/3h-Hph)/(r62)

Fl-a: r. n-</j

so that the midpoint of the hvperellipsoid B is H/3/,. 
Depending on the values we assign to H/3/,, for instance 
H/3/, = w, we get points w, which lie inside the hyperellipsoid 
B and points vvu which lie outside the hyperellipsoid. For 
the hyperellipsoids B, and B„ determined by w, and w„ we 
have

P(H/3,, e B, y) < I - a (4.3)

P(H/3/, 6 B„ | y) > I - « (4.4)

Hence, the test of the general linear hypothesis (2.6) is 
equivalent in Bayesian inference to the check of whether 
the point H/3/, = w lies inside or outside the hyperellipsoid 
defined by eq. (4.2). If it lies outside, the hypothesis has to 
be rejected according to eqs. (3.10) and (4.4). The 
probability in eqs. (4.3) or (4.4) can be easily computed by 
means of the F-distribution (4.1). With the test statistic T 
from eq. (2.7), the hypothesis (2.6) has to be rejected, if

T
/ F(r, n-q) dF> 1 - a (4.5)
0

or if T > Fi a; r. r-q, as shown in (2.9), so that the Bayesian 
approach and the sampling theory give the same results.

The probability of the unknown parameters or their 
linear transformations confined to a restricted parameter 
space can easily be obtained in Bayesian inference by eq. 
(3.9). Now, less sensitive tests are found if we restrict the 
parameter space such that we introduce a region R for the 
parameters close to their expected values, which is 
excluded from the statistical inference. Applied to the test 
of the hypothesis (2.4) or (2.5) of the identity of coordi
nates, this is comparable to introducing intervals in which 
the coordinates are allowed to move. The probability 
density function of the parameters for this region R 
obtains the value zero. If R has the shape of a hyperellipsoid 
with the midpoint at H/3/,, as in eq. (4.2), all hypotheses 
with w inside of this region receive the probability zero, 
since the density of the parameters of their linear trans
formations in R is zero.

By introducing the zero values for the density, we 
truncate the density for the parameters in R so that the 
density for the remaining space has to be renormalized. If 
fl denotes the entire space for H/3/,, the space fir, on 
which the transformed parameters are now restricted, is 
given by the difference of fl and R

Hr=n\R (4.6)

Let the posterior density of the transformed parameters 
be given by h(H/3/,). Thus

p(H/3„ | y) = h(H/3/,) for Hph e O ; (4.7)

then the renormalized truncated density for the restricted 
space 11/ is obtained by

pHH/3,,|y) = ( / h(H/3/,) dH/3/,) ’ h(H/3,,)for H/3,, e Or
nT

or with eq. (4.6)
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pHHjfc | y) = (I - / h(Hpb) dHp„r' h(H/fc) for H/3* e Or.
* (4.8)

For any region A with ACflr we obtain the probability 
from eq. (4.7)

P(Hj3* eA) = / h(H/3ft) dH(3h with ACflr (4.9)
A

and from eq. (4.8)

Pt<H/3* eA) = (1 - f h(H/?i)dlW /h(H/3fc)dH/3A
" (4.10)

Since AHR = 0 we get

P(H0* e(AUR)) = f h(H/3b)dHp„ + jf h(Hpb) dHph

and therefore (Riesmeier 1984)

PrtHft e A) < P(Hft e (AUR)) (4.11)

since, with

P a= f h(H/3*)dH/8fc and P *= / h(Hpb)dHpb
A R

we find

P^<(1 - Pj,)(P„ +.Pj»)= P^ + P*(l -(P„ + P*))

or

0< P*(l -(P„ + P*))

because P« > O and ?A + P« < I. The inequality (4.11) 
shows that less sensitive tests are obtained if the truncated 
density for the restricted parameter space is applied. The 
reason is that the probability obtained with this density 
for the region A, which will be associated with a 
hypothesis, is smaller than the probability obtained from 
the density of the unrestricted space.

Let the region R have the form of a hyperellipsoid with 
the midpoint at H/3*, hence

R = {H/3„:
(Hj8t - Hp„)’ (H(X'X)„ HT1 (HjSfc - H/?*)/(ra2) < T*}

(4.12)

where

T* = (H/3(, - wRy (H(X'X)rj HT1 (Hj8fr - w*)/(rd2)

so that the size of this region is determined by the vector 
H0b — wr. The density associated with R is given by the 
F-distribution because of (4.1)

T
/ h(H/Jfr)dH/?i = f F(r,n-q)dF (4.13) 
R o

Let the region AUR be also defined by a hyperellipsoid, 
whose midpoint is H/3b and whose size is given by the 
general hypothesis H/3/, = w in (2.6); hence

AUR = {H/3b:
(H/3f> - Hpby (H(X'X)„HT‘ (H/3b H^)/(rd2) < T!

(4.14)

where

T = (H0h - w)' (H(X'X)„)H') 1 (HjS* “ w)/(ra2)

Because of A = (AUR)\R we get

/h(Hft)dH/?*= / h(H/8;,)dH/8fc —/ h(Hj8/,)dH)3 (4.15) 
A AUR R
where

T
/ h(H#,)dH/3„ = /F(r,n-q)dF 

AUR 0
By substituting eqs. (4.13) and (4.15) into eq. (4.10) we get 
the probability for the less sensitive test

PHH& eA) =

T« T Tfl
3 (1— / F(r,n-q)dFf'( / F(r,n-q)dF—/ F(r,n-q)dF),
lo 0 0 0

for T*<T 
for T*>T 

(4.16)

where the exterior of A is limited by the hyperellipsoid 
with the vector HfSb — w from the hypothesis (2.6) and the 
interior by the hyperellipsoid for the region R with the 
vector H/3/, — wR in eq. (4.12).

According to eq. (3.10) the hypothesis H/T, = w in eq. 
(2.6) is rejected by the less sensitive test if

Tr T Tr
(I- / F(r,n-q)dF)~'(/ F(r,n-q)dF- / F(r.n-q)dF) 

o o o

For this less sensitive test the F-distribution only is 
needed. The sensitivity of the test depends on the size of 
the region R, which means on the size of the vector 
Hpb - wR. The larger the size of this vector, the less 
sensitive the test becomes. If, on the other hand, the 
vector equals the zero vector, the less sensitive test gives 
the same result as the hypothesis testing of the sampling 
theory.

To apply the less sensitive test, the region R, i.e., the 
amount of the vector H/3/, — w«, has to be chosen, in 
which the linear transformation H/3, of the parameters 
are allowed to vary without associating a density with 
them. This choice, of course, is arbitrary. However, the 
vector should be selected so that it reflects the differences 
between the coordinates of the points in the network 
which may be expected between the two epochs of 
observations. In such a case the less sensitive test will give 
more realistic results than the hypothesis test of sampling 
theory.

5. APPLICATION TO A LEVELING NETWORK

Two epochs of the most recent leveling data in the 
Houston-Galveston area were analyzed. In this area land 
subsidence occurs, which is monitored by repeated 
levelings. The first epoch of the data was obtained in
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1978, the second epoch in 1983. The network extends 
from Galveston in the south to Addicks, Houston, and 
Crosby in the north. The original observations for 1012 
bench marks were condensed such that only 99 bench 
marks remained for the epoch 1978, and 94 bench marks 
for the epoch 1983. Eighty-nine of these bench marks are 
in common to both epochs.

The number n-q of degrees of freedom in the nets of 
both epochs is 6. Hence, the nets of both epochs are only 
weakly overdetermined. By assuming independent obser
vations with variances a] — s [mm2], where s is the 
distance measured in [km] between two bench marks, the 
estimate 6\ of the standard deviation of unit weight for 
epoch 1978 is ai = 3.37, and for epoch 1983 6i — 1.57. 
Thus, a considerable difference is encountered between 
the two epochs, which can be attributed to the small 
degree of freedom.

For the first combined adjustment of both epochs 
according to eq. (2.3), a deep seated bench mark common 
to both epochs was introduced to define the datum. Using 
a significance level of a = 0.05 in the test of eq. (2.5), 
additional fixed points were found which were then 
introduced to define the datum. After three additional 
adjustments, 60 bench marks of the 89 bench marks 
common to both epochs had to be considered as fixed 
points. Only for the remaining 19 bench marks were the 
height differences significantly different from zero. These 
height differences are greater than 53 mm.

The less sensitive test defined by eq. (4.16) was applied 
by allowing for height differences of 4 mm, 5 mm, and 6 
mm for the same point between the two epochs. These 
differences are excluded from the statistical inference. The 
amounts of 4 mm to 6 mm seem to be justified, taking 
into consideration the long time span of 5 years between 
observations. Hence, T* in eq. (4.16) is obtained together 
with eq. (2.12) by

Tr = (Ah)2/(d2(((X,'X,);i)tf + ((X:'X2Q„)) (5.1)

where

Ah = 4 mm. Ah = 5 mm and Ah = 6 mm

For Ah = 4 mm, six additional points have to be 
considered as fixed with the seventh point very close to 
the boundary of rejection given by the significance level of 
a = 0.05. Based on Ah = 5 mm and Ah = 6 mm in (5.1), 
seven additional points had to be considered as fixed 
points. Using these points also as datum points, the height 
differences which turn out to be statistically significant 
from zero are greater than 93 mm.

In the analysis of the data presented here only seven 
points in addition to the sixty points common to both 
epochs were found to be fixed points by the less sensitive 
test. However, the minimum height differences considered

as being statistically significant from zero jumped from 53 
mm for the hypothesis test of sampling theory to 93 mm 
for the Bayesian inference. The standard deviation a of 
unit weight for the combined adjustment (2.3) of the first 
and second epoch is a = 2.6, so that the standard 
deviation of a height difference measured over a distance 
of 1 km length is 2.6 mm. This standard deviation is small 
in comparison to the minimum height difference of 93 
mm, which is considered significantly different from zero.

Hence, using the standard deviation of unit weight as a 
measure for detecting height differences, which are statis
tically significant from zero, could be very misleading.
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